Phytochemistry, 1975, Vol. 14, p. 592, Pergamon Press, Printed in England.

TRITERPENOIDS FROM THE LEAVES OF CALLISTEMON LANCEOLATUS*

M. FL-GARRY YOUNES

Department of Chemistry, Faculty of Science, University of Assiut, Assiut, Egypt, A.R.E.

(Received 6 June 1974)

Key Word Index—Callistemon lanceolatus; Myrtaceae; triterpenoids.

Callistemon lanceolatus is an ornamental plant, and the flowers of an Indian specimen were shown to contain several flavonoids [1]. No other constituents have been reported.

The light petrol. extract of the leaves gave ursolic and oleanolic acids, separated by fractional crystallisation of their methyl ester benzoates [2, 3] (identified by m.p., $[\alpha]_D$, MS); and uvaol (m.p. and m.m.p., MS, $[\alpha]_D$; diacetate, m.p. and m.m.p., $[\alpha]_D$).

The Et₂O extract gave 2α-hydroxyursolic acid (identified as methyl ester, m.p., MS), and a new triol as colourless needles (Et₂O), identified as 2α hydroxyuvaol, m.p. 235–40°, $\lceil \alpha \rceil_D + 60^\circ$, M⁺ is corresponding to molecular formula $C_{30}H_{50}O_3$. The spectrum showed a peak at m/e203 (base peak), characteristic of Δ^{12-13} double bond in ursane series [4]. $(2\alpha$ -Acetoxyuvaol diacetate $(C_{36}H_{56}O_6)$, m.p. $163-5^{\circ}$, $[\alpha]_D + 18.5^{\circ}$, τ at 4.88 (triplets; one vinyl H), τ at 7.97 (two acetate groups), τ at 8.04 (one acetate group)). Oxidation of the triol (CrO₃/pyridine) at room temperature overnight, afforded a yellowish gum and having the properties of a diosphenol; $\lambda_{\text{max}}^{\text{LtOH}}$ 270 nm (ξ , $\lambda_{\text{max}}^{\text{EtOH-KOH(1°s)}}$ 314 nm ξ , 6000), ν_{max} 7500). 3448 cm^{-1} (OH), 1696 cm^{-1} (C=O), $a + \text{ve FeCl}_3$

and Zimmermann test for 3-oxo-triterpenoids [5]. The structure of the triol was confirmed by reducing methyl 2α -hydroxyursolate with LiAlH₄ to the triol, identical in all respects with the natural compound (IR, m.p., m.m.p. and specific rotation). Thus, the triol is 2α -hydroxyuvaol, which has thus been isolated for the first time from any natural source.

The MeOH extract gave glucose and sucrose (PC), together with a mixture of saponins, which after acid hydrolysis [6] and chromatography on alumina, it gave methyl 2α -hydroxyursolate and 2α -hydroxyuvaol. Both compounds were identical in all respects (IR, m.p., and specific rotations) with the corresponding authentic samples.

REFERENCES

- 1. Tandon, S. P., Tiweri, K. P. and Tripathi, K. C. (1970) Natururissenschaften 57(8), 394.
- Glen, A. T., Lawrie, W., McLean, J. and El-Garby Younes. M. (1967) J. Chem. Soc. (C), 510.
- Glen, A. T., Lawric, W., McLean, J. and El-Garby Younes.
 M. (1965) Chem. Ind. 13, 1908.
- 3. El-Garby Younes. M. (1970) Ind. J. Chem. 8(9), 853.
- Budzickiewick, H., Wilson, J. M. and Djerassi, C. (1963) J. Am. Chem. Soc. 85, 3688.
- Barton, D. H. R. and De Mayo, P. (1954) J. Chem. Soc. 887.
 Dugan, J. J., De Mayo, P. and Starrat, A. M. (1964) Can.
- Dugan, J. J., De Mayo, P. and Starrat, A. M. (1964) Can. J. Chem. 42, 491.
- 7. Osman A. M., El-Garby Younes, M. and Mokhtar, A. (1975) *Aust. J. Chem.* **28** (in press).

^{*} Part XIV in the series. For Part XIII see reference 7.